Search results for "Fokker–Planck equation"

showing 10 items of 38 documents

A Note on Laws of Motion for Aggregate Distributions

2020

I derive the law of motion for the aggregate distribution directly from the laws of motion for the individuals’ states. By relying on concepts from measure theory, the derivation is concise and intuitive. I address random shocks both at the micro level and at the macro level. Micro-level shocks completely cancel at the aggregate level provided that a law of large numbers applies. Therefore, the law of motion for the aggregate distribution is a deterministic process in the absence of macro-level uncertainty. If there are macro-level risks, the law of motion for the aggregate distribution exhibits a stochastic component additionally. I illustrate the formalism in a model of wealth accumulatio…

050208 financeFormalism (philosophy)media_common.quotation_subject05 social sciencesAggregate (data warehouse)Newton's laws of motionMotion (physics)Interest rateFormalism (philosophy of mathematics)Classical mechanicsAggregate distributionComponent (UML)0502 economics and businessFokker–Planck equationWealth distributionStatistical physics050207 economicsmedia_commonMathematicsTheoretical Economics Letters
researchProduct

Path integral solution for non-linear system enforced by Poisson White Noise

2008

Abstract In this paper the response in terms of probability density function of non-linear systems under Poisson White Noise is considered. The problem is handled via path integral (PI) solution that may be considered as a step-by-step solution technique in terms of probability density function. First the extension of the PI to the case of Poisson White Noise is derived, then it is shown that at the limit when the time step becomes an infinitesimal quantity the Kolmogorov–Feller (K–F) equation is fully restored enforcing the validity of the approximations made in obtaining the conditional probability appearing in the Chapman Kolmogorov equation (starting point of the PI). Spectral counterpa…

Characteristic function (probability theory)Mechanical EngineeringMathematical analysisFokker-Planck equationAerospace EngineeringConditional probabilityKolmogorov-Feller eqautionOcean EngineeringStatistical and Nonlinear PhysicsProbability density functionWhite noiseCondensed Matter PhysicsPoisson distributionPath Integral Solutionsymbols.namesakeNuclear Energy and EngineeringPath integral formulationsymbolsFokker–Planck equationSettore ICAR/08 - Scienza Delle CostruzioniChapman–Kolmogorov equationCivil and Structural EngineeringMathematicsProbabilistic Engineering Mechanics
researchProduct

Generalized Wiener Process and Kolmogorov's Equation for Diffusion induced by Non-Gaussian Noise Source

2005

We show that the increments of generalized Wiener process, useful to describe non-Gaussian white noise sources, have the properties of infinitely divisible random processes. Using functional approach and the new correlation formula for non-Gaussian white noise we derive directly from Langevin equation, with such a random source, the Kolmogorov's equation for Markovian non-Gaussian process. From this equation we obtain the Fokker-Planck equation for nonlinear system driven by white Gaussian noise, the Kolmogorov-Feller equation for discontinuous Markovian processes, and the fractional Fokker-Planck equation for anomalous diffusion. The stationary probability distributions for some simple cas…

Diffusion equationStatistical Mechanics (cond-mat.stat-mech)General MathematicsMathematical analysisGeneral Physics and AstronomyFOS: Physical sciencesOrnstein–Uhlenbeck processCondensed Matter - Soft Condensed MatterGaussian random fieldLangevin equationsymbols.namesakeStochastic differential equationAdditive white Gaussian noiseGaussian noisesymbolsProcess and Kolmogorov'sSoft Condensed Matter (cond-mat.soft)Fokker–Planck equationCondensed Matter - Statistical MechanicsMathematics
researchProduct

A Fisher–Kolmogorov equation with finite speed of propagation

2010

Abstract In this paper we study a Fisher–Kolmogorov type equation with a flux limited diffusion term and we prove the existence and uniqueness of finite speed moving fronts and the existence of some explicit solutions in a particular regime of the equation.

Entropy solutionsPartial differential equationDiffusion equationApplied MathematicsMathematical analysisFlux limited diffusion equationsReaction–diffusion equationsFront propagationReaction–diffusion systemFisher–Kolmogorov equationFokker–Planck equationUniquenessDiffusion (business)Convection–diffusion equationAnalysisMathematicsJournal of Differential Equations
researchProduct

Diffusion front capturing schemes for a class of Fokker–Planck equations: Application to the relativistic heat equation

2010

In this research work we introduce and analyze an explicit conservative finite difference scheme to approximate the solution of initial-boundary value problems for a class of limited diffusion Fokker-Planck equations under homogeneous Neumann boundary conditions. We show stability and positivity preserving property under a Courant-Friedrichs-Lewy parabolic time step restriction. We focus on the relativistic heat equation as a model problem of the mentioned limited diffusion Fokker-Planck equations. We analyze its dynamics and observe the presence of a singular flux and an implicit combination of nonlinear effects that include anisotropic diffusion and hyperbolic transport. We present numeri…

FTCS schemeNumerical AnalysisDiffusion equationPhysics and Astronomy (miscellaneous)Anisotropic diffusionApplied MathematicsMathematical analysisComputer Science ApplicationsComputational MathematicsNonlinear systemModeling and SimulationInitial value problemFokker–Planck equationHeat equationBoundary value problemMathematicsJournal of Computational Physics
researchProduct

Multiplicative cases from additive cases: Extension of Kolmogorov–Feller equation to parametric Poisson white noise processes

2007

Abstract In this paper the response of nonlinear systems driven by parametric Poissonian white noise is examined. As is well known, the response sample function or the response statistics of a system driven by external white noise processes is completely defined. Starting from the system driven by external white noise processes, when an invertible nonlinear transformation is applied, the transformed system in the new state variable is driven by a parametric type excitation. So this latter artificial system may be used as a tool to find out the proper solution to solve systems driven by parametric white noises. In fact, solving this new system, being the nonlinear transformation invertible, …

Fokker-Planck equation; Itô's calculus; Kolmogorov-Feller equation; Parametric forces; Poisson input; Stochastic differential calculusState variableAerospace EngineeringOcean EngineeringKolmogorov-Feller equationPoisson inputlaw.inventionlawCivil and Structural EngineeringMathematicsParametric statisticsParametric forceMechanical EngineeringMathematical analysisFokker-Planck equationStatistical and Nonlinear PhysicsWhite noiseCondensed Matter PhysicsItô's calculuNonlinear systemNoiseInvertible matrixNuclear Energy and EngineeringFokker–Planck equationStochastic differential calculusPoisson's equationProbabilistic Engineering Mechanics
researchProduct

Direct Derivation of Corrective Terms in SDE Through Nonlinear Transformation on Fokker–Planck Equation

2004

This paper examines the problem of probabilistic characterization of nonlinear systems driven by normal and Poissonian white noise. By means of classical nonlinear transformation the stochastic differential equation driven by external input is transformed into a parametric-type stochastic differential equation. Such equations are commonly handled with Ito-type stochastic differential equations and Ito's rule is used to find the response statistics. Here a different approach is proposed, which mainly consists in transforming the Fokker–Planck equation for the original system driven by external input, in the transformed probability density function of the new state variable. It will be shown …

Kushner equationDifferential equationApplied MathematicsMechanical EngineeringNonlinear transformationMathematical analysisFirst-order partial differential equationFokker-Planck equationAerospace EngineeringOcean EngineeringPoisson inputItô's calculuIntegrating factorStochastic partial differential equationStochastic differential equationQuantum stochastic calculusControl and Systems EngineeringApplied mathematicsFokker–Planck equationStochastic differential calculusElectrical and Electronic EngineeringMathematicsNonlinear Dynamics
researchProduct

On the generalization of the Boltzmann equation

1974

Starting from the Liouville equation and making use of projection operator techniques we obtain a compact equation for the rate of change of then-particle momentum distribution function to any order in the density. This equation is exact in the thermodynamic limit. The terms up to second order in the density are studied and expressions are given for the errors committed when one makes the usual hypothesis to derive generalized Boltzmann equations. Finally the Choh-Uhlenbeck operator is obtained under additional assumptions.

Laplace's equationPhysicsPartial differential equationZwanzig projection operatorIntegro-differential equationFunctional equationApplied mathematicsFokker–Planck equationBoltzmann equationBhatnagar–Gross–Krook operatorIl Nuovo Cimento B Series 11
researchProduct

CMOS-compatible field effect nanoscale gas-sensor: Operation and annealing models

2008

Complete modelling of electrically controlled nanoscale gas sensors with Poisson, Wolkenstein, Fokker-Planck and continuity is presented. Based on a plausible Drift explanation we developed suitable models for sensitivity control and operational modes. An onset for CMOS-complying annealing procedures is given.

Materials scienceCMOSbusiness.industryAnnealing (metallurgy)Logic gateElectronic engineeringField effectOptoelectronicsFokker–Planck equationConductivitybusinessNanoscopic scaleCmos compatible2008 IEEE Sensors
researchProduct

Adaptive Gaussian particle method for the solution of the Fokker-Planck equation

2012

The Fokker-Planck equation describes the evolution of the probability density for a stochastic ordinary differential equation (SODE). A solution strategy for this partial differential equation (PDE) up to a relatively large number of dimensions is based on particle methods using Gaussians as basis functions. An initial probability density is decomposed into a sum of multivariate normal distributions and these are propagated according to the SODE. The decomposition as well as the propagation is subject to possibly large numeric errors due to the difficulty to control the spatial residual over the whole domain. In this paper a new particle method is derived, which allows a deterministic error…

Mathematical optimizationPartial differential equationApplied MathematicsGaussianComputational MechanicsBasis functionProbability density functionMultivariate normal distributionResidualsymbols.namesakeOrdinary differential equationsymbolsApplied mathematicsFokker–Planck equationMathematicsZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
researchProduct